skip to main content


Search for: All records

Creators/Authors contains: "Wright, Justin P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. By dispersing seeds long distances, large, fruit-eating animals influence plant population spread and community dynamics. After fruit consumption, animal gut passage time and movement determine seed dispersal patterns and distances. These, in turn, are influenced by extrinsic, environmental variables and intrinsic, individual-level variables. We simulated seed dispersal by forest elephants ( Loxodonta cyclotis ) by integrating gut passage data from wild elephants with movement data from 96 individuals. On average, elephants dispersed seeds 5.3 km, with 89% of seeds dispersed farther than 1 km. The longest simulated seed dispersal distance was 101 km, with an average maximum dispersal distance of 40.1 km. Seed dispersal distances varied among national parks, perhaps due to unmeasured environmental differences such as habitat heterogeneity and configuration, but not with human disturbance or habitat openness. On average, male elephants dispersed seeds farther than females. Elephant behavioral traits strongly influenced dispersal distances, with bold, exploratory elephants dispersing seeds 1.1 km farther than shy, idler elephants. Protection of forest elephants, particularly males and highly mobile, exploratory individuals, is critical to maintaining long distance seed dispersal services that shape plant communities and tropical forest habitat. 
    more » « less
  2. Abstract

    Body size influences an individual's physiology and the nature of its intra‐ and interspecific interactions. Changes in this key functional trait can therefore have important implications for populations as well. For example, among invertebrates, there is typically a positive correlation between female body size and reproductive output. Increasing body size can consequently trigger changes in population density, population structure (e.g. adult to juvenile ratio) and the strength of intraspecific competition.

    Body size changes have been documented in several species in the Arctic, a region that is warming rapidly. In particular, wolf spiders, one of the most abundant arctic invertebrate predators, are becoming larger and therefore more fecund. Whether these changes are affecting their populations and role within food webs is currently unclear.

    We investigated the population structure and feeding ecology of the dominant wolf spider speciesPardosa lapponicaat two tundra sites where adult spiders naturally differ in mean body size. Additionally, we performed a mesocosm experiment to investigate how variation in wolf spider density, which is likely to change as a function of body size, influences feeding ecology and its sensitivity to warming.

    We found that juvenile abundance is negatively associated with female size and that wolf spiders occupied higher trophic positions where adult females were larger. Because female body size is positively related to fecundity inP. lapponica, the unexpected finding of fewer juveniles with larger females suggests an increase in density‐dependent cannibalism as a result of increased intraspecific competition for resources. Higher rates of density‐dependent cannibalism are further supported by the results from our mesocosm experiment, in which individuals occupied higher trophic positions in plots with higher wolf spider densities. We observed no changes in wolf spider feeding ecology in association with short‐term experimental warming.

    Our results suggest that body size variation in wolf spiders is associated with variation in intraspecific competition, feeding ecology and population structure. Given the widespread distribution of wolf spiders in arctic ecosystems, body size shifts in these predators as a result of climate change could have implications for lower trophic levels and for ecosystem functioning.

     
    more » « less
  3. Abstract Questions

    Disturbances can cause fluctuations in resource availability that influence plant performance. In systems with such dynamics, inter‐specific differences in resource capture may promote co‐existence by partitioning competition between periods of high or low resource availability. Such differences in resource use strategy have been described with the Plant Economics Spectrum, which hypothesizes that functions related to resource use and processing should co‐vary and can be predicted from plant traits. In pyrogenic systems, fires are associated with short‐term increases in soil nitrogen availability (“pulses”), and thus contribute to a fluctuating resource supply. In this study, we sought to understand whether plants differed in their capacity to capture a nitrogen pulse, and to what extent that ability influenced biomass recovery.

    Methods

    In two consecutive greenhouse experiments, we tested whether two functions — nitrogen assimilation (Experiment 1) and biomass regrowth after disturbance (Experiment 2) — co‐varied, and how each function corresponded to leaf and root functional traits.

    Results

    In Experiment 1, four co‐occurring shrubs differed in their temporal patterns of nitrogen uptake, and nitrogen uptake was positively correlated with resource‐acquisitive leaf traits (leaf percent nitrogen). In Experiment 2, the biomass regrowth of a resource acquisitive and a resource conservative species was the same regardless of competitive environment (i.e., when grown in pots of mixed‐species or same‐species pairs). Rather than being associated with the capture of new nitrogen, biomass resprouting of both species was associated with the size of below‐ground resource stores and specific root length.

    Conclusions

    Our work suggests that resource acquisition and processing may be decoupled from each other after disturbance, and also highlights the need for explicit tests of the relationships between root traits and above‐ground plant function.

     
    more » « less
  4. Schrodt, Franziska (Ed.)
  5. Abstract

    Whole microbial communities regularly merge with one another, often in tandem with their environments, in a process called community coalescence. Such events impose substantial changes: abiotic perturbation from environmental blending and biotic perturbation of community merging. We used an aquatic mixing experiment to unravel the effects of these perturbations on the whole microbiome response and on the success of individual taxa when distinct freshwater and marine communities coalesce. We found that an equal mix of freshwater and marine habitats and blended microbiomes resulted in strong convergence of the community structure toward that of the marine microbiome. The enzymatic potential of these blended microbiomes in mixed media also converged toward that of the marine, with strong correlations between the multivariate response patterns of the enzymes and of community structure. Exposing each endmember inocula to an axenic equal mix of their freshwater and marine source waters led to a 96% loss of taxa from our freshwater microbiomes and a 66% loss from our marine microbiomes. When both inocula were added together to this mixed environment, interactions amongst the communities led to a further loss of 29% and 49% of freshwater and marine taxa, respectively. Under both the axenic and competitive scenarios, the diversity lost was somewhat counterbalanced by increased abundance of microbial taxa that were too rare to detect in the initial inocula. Our study emphasizes the importance of the rare biosphere as a critical component of microbial community responses to community coalescence.

     
    more » « less